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Summary. A new perturbative procedure is analyzed numerically for four single 
bonded diatomic molecules. The starting model is the second-quantized self-con- 
sistent He i t l e r -London  model. The unperturbed function is a four-determinant 
Bardeen-Cooper-Schr ie f fer  function. The model Hamiltonian is the ordinary 
Hamiltonian plus linear and quadratic powers of  a two-level number operator. 
Parameters which multiply the additional terms are chosen to enforce particle- 
number  symmetry. Convergence of the perturbative series for the energy as a 
function of internuclear distance is reasonable: third-order corrections are about  
an order of  magnitude smaller than second-order corrections; total corrections 
through third order are about  two orders of  magnitude smaller than first-order 
energies. 
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1. Introduction 

B a r d e e n - C o o p e r -  Sch r i e f f e r -L ipk in -Nogami -He i t l e r -  London(N) ( B C S L N -  
HL(N))  is Nth-order  many-body perturbation theory (MBPT) starting from the 
self-consistent (SC) HL model [1]. It  is the simplest correct SC MBPT for 
chemical bonds. The choice of  nomenclature is explained in Part  I of  this series 
[2]. 

Spectroscopic constants calculated with B C S L N - H L ( 3 )  were reported in 
Paper I for H2, LiH, FH, F2 and N 2. Renormalized Feynman diagrams (FD)  are 
derived in Part  I I  [3]. Part  I I I  reports ground-state energy curves for four single 

* This work was supported in part by the U.S. Department of the Navy, Space and Naval Warfare 
Systems Command under Contract N00039-89-C-0001, and in part by IBM RSP 3112. It was 
presented, in part, at the Midwest Theoretical Chemistry Conference, Indianapolis, Indiana, 1989, 
and at the Midwest Theoretical Chemistry Conference, Madison, Wisconsin, 1990. 
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bonded diatomic molecules [4]. 

H2()(lz~ + )  -+ 2H(2S) la0 ~< R ~ 8a0 

LiH(XIZ +) --+ Li(2S) + H(2S) 2a0 ~< R ~< 15a0 
». (1) 

FH(X~S +) -« F(2P) + H(2S) (1.03ao <~ R <~ 9ao 

F2(xlz~ + ) --~ 2F(2p) 1.8a0 ~< R <~ 6ao 

Reasons for selecting these diatomics are given in Part I of thi series. 
The present work describes the unperturbed models (BCSLN-HL(1)) and 

analyzes the perturbative corrections (BCSLN-HL(2 and 3)) which are the basis 
for the energy curves reported in Part III. Section 2 describes the unperturbed 
models. Section 3 analyzes the perturbative corrections. 

2. BCSLN-HL(1) 

2.1. HL quasiparticles 

Pairing is deterrnined by adiabatic continuity to atomic limits. The hole and 
particle which become degenerate at long bond distances are paired levels. 

bond paired hole paired partiele" 

H2 (X1 z~ + ) lo-g lau 

LiH(X1Z +) 2~r 3a ». 
(2) 

FH(XIZ +) 3a 4« 

F2(X1Sg + ) 30"g 3aù 

Degeneracy is determined by adiabatic symmetry correlation. 
The density matrix (pairing matrix) has diagonal (canonical) form (canonical 

representation [ 5  p 248]). äk(ä~) is an annihilation operator for orbital Ck with 
spin e (spin t8). k is shorthand for - k .  Pairing removes particle-hole degeneracy 
by diagonalizing a model Hamiltonian. A special Bogoliubov-Valatin (BV) 
transformation is the transformation to the diagonal representation. Suppose the 
label 1 (2) is assigned to the hole (particle) which is allowed to pair. The H L B V  
transformation pairs spin quantum numbers for äl and ä2 and is a particle-hole 
transformation for all other levels. 

~1 = Uläl - -  / ) l ä f  a 2  = U 2 ä 2  - -  ~32ä~ - "~ 
^ = A A + f paired levels 
~t T ulai  + vlä  + ~t~ = u2ä~ + v2a2 

^ A-k t «k = a;, holes » (3) 

6tk̂  = äx̂  ~ particles 
«£ = a £  3 

&l and ~2 (äy and ä~) describe H L  quasiparticles with spin « (spin /~). Paired 
holes and particles are fractionally occupied, uk (vk) is the weight of the particle 
(hole) operator in the HL quasiparticle operator ~k. u~ (v~) is the probability 
that q5 k is empty or particle-like (full or hole-like). 
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HL quasiparticles depend on overlap and relative phases of HLBV transfor- 
mation coefficients. The transformation from (~1 and ~b2 to overlapping orbitals 
Zz and ~r connects overlap to HLBV transformation coefficients. 

)~rZI ~~- UI~)I -~- ~)1 - -  Ul ~)2 } S = ( Z l ] Z r  ) =2Vl 2 -  1. (4) 

u~ is determined by the normalization condition: 

Ul ~ + v,  ~ = 1. (5)  

v~ is determined by the conservation condition for the two bonding electrons [6]: 
2 2 _ _  v l + v 2 -  1. (6) 

Phase choices fix the HLBV transformation coefficients for the ground state: 

U 1 > 0 ,  V2"-~" - u l  "~. (7) 
U 1 > O,  U 2 = U 1 3 

2.1.1. Unperturbed ground state. An HL pair is a product of paired annihilation 
operators for HL quasiparticles. 

( 1 )  . . . .  
~ü= Vl ~ «,«i«~«5. (8) 

Each HL pair is a model 
unpaired hole operators: 

"1 
^ +  A +  
a l a a l ä  

2 

g =  H H ~+a+~+ä+ t~ker k# ~ l g (  lff( 
k = l  (=x , y  

2 

two-electron bond. A model core is a product of 

H 2 

LiH 

FH 
». (9) 

H H H ä+ ~'+ ä+ ~'+ F2 k«p~käp l~Z~p t~ lff~p 
p = g,u k = 1 ( = x,y 

Each model core describes a closed-shell doubly-charged positive ion. 
The product of model pair and core operators applied to the bare vacuum ] ) 

is the unperturbed ground state (HL vacuum ]~Se)) :  

I~(F~c') = ~fK] 5 (10) 

= u,v , (R I > - I l i 2 ~ ) )  + Vl~lli5 - u~12~> (11) 
= ux/ü~~4 + v~]HL) + UiVl(K] ) -11122)) (12) 

Œ k l ~ ~ )  = 0  for all k. (13) 

1~~4P£ a ) is a BCS function [5, Eq. (6.66)]. The four terms of Eq. (11) are 
determinants, k I ) describes two holes (doubly-charged positive ion). [ l l )  is the 
particle-hole vacuum: 

Ili>=äFäIRI 5. (14) 
[225 is a two-particle, two-hole excited state: 

1225 ~+ ~+ ~ ~ Ili).  (15) = a 2 a5  aTal  
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11122) describes two particles (doubly-charged negative ion)" 

1112~> = äfä-~ [li>. (16) 

[HL) is the ground state HL wave function. 

F 1 ql/2 IHL> = [ ~ J  (v~lli>- u~122> (17) 

I 1 ql/2 
-= 2(1 + S 2)~ ([Z,Ze) + [ZrZ?)). (18) 

[ZIZe) and ]ZrZ?) describe overlapping orbitals outside a model core. 

2.1.2. Unperturbed excited stares. Normalized unperturbed excited stares are HL 
quasiparticles or unpaired particles or holes above the vacuum. 

ä + h +  . . .  x,+ ä+x,+ ..  ^+ I~&,e)" (19) a 1 R a  2 ~a~a n k 1 ~ k  2 " O~kn 

a(k) is restricted to particle (hole) labels of the particle-hole vacuum I li>. This 
ensures one-to-one correspondence with excited states of the particle-hole prob- 
lem [7, Sect. 7.4.5]. Excited states with manifestly incorrect particle-number are 
excluded. 

Side conditions are needed to enforce particle-number symmetry for some of 
the excited states. In particular, particle-number conservation is violated 
whenever at least one k; = 1 or at least one ag = 2 in Eq. (19). Some of this error 
is corrected by using the model Hamiltonian for the ground stare (HHL in Sect. 
2.2 below) in all calculations. This has been discussed for the special case of 
chemical potential [5, Sect. 6.3.4(i)]. The numerical studies reported in Part III 
show that such usage of HHL is commensurate with the accuracy of finite basis 
sets. 

Other restrictions on unperturbed excited states are needed to avoid diagram- 
matic overcount. No part of the HL correlation energy may be counted by 
perturbative corrections. Excited states with labels a i = 2 and ki = 1 Vi = 1 , . . . ,  n 
are not allowed. This eliminates spurious stares. 

2.1.3. Occupation numbers and pairing numbers. ~ßl and q5 z are fractionally 
occupied in 1;/g5¢) and [HL). Occupation numbers (hg) and pairing numbers 06) 
for [ocf£,e ) may be compared to occupation numbers (n;) and products of mixing 
coefficients (I12) for IHL). All may be expressed in terms of HLBV transforma- 
tion coefficients: 

v~ nT 
H1--  4 4 

U l "~- l) 1 

u{ 
n 2  ~ 4 4 ~ H ~  

Ul q-v1 
2 2 

UlU 1 
I12 - -  4 4 

U 1 -[- U 1 

(20) 

h , = v ~ = h 7  }. 
Z~ = x / h ~ ( 1 - h ~ ) = - Z T  = -Z2=Z~  

(21) 
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Fig. 1. Self-consistent  overlap 

h« (X~ 2) is a linear function of 8($2). 
S = 2 h l - l = 1 - 2 h 2 ,  Z 2 = 1 ( 1 - $ 2 ) .  (22) 

S(R) is plotted in Fig. 1. Curves for covalent bonds differ from weakly 
covalent LiH. S(R«) for F 2 is smaller than others because the bond is "long". 
S(R«) for LiH is large because metallic functions are large. 

Occupation numbers (pairing numbers) are plotted in Fig. 2 (Fig. 3). Shapes 
of occupation-number curves in Hilbert space differ from those in Fock space. 
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1 All app roach  + ~ at  long bond  distances. Occupat ion  numbers  for  4 1  ( 4 2 )  in 
Fock  space are smaller (larger) than  in Hi lber t  space. Pairing numbers  have 
larger magni tudes  t h a n / , 2 .  Paired orbitals are always fract ionally occupied. This 
is not  predicted by the ordinary  BCS saddle-point- type approximat ion :  Nea r  Re, 
H a r t r e e - F o c k  ( H F )  energies m a y  lie below BCS saddle-point- type energies 
[8, 9]. Values at R« for  L iH  are comparab le  to others. Smaller (larger) hole 
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Fig. 3. Pairing numbers  

(particle) occupat ion  numbers  and larger hole-part icle pair ing magni tudes  are 
associated with the " long"  covalent  F2 bond.  

When  h, = hT = kz = h~ = ½, ~ I ~ T  and ~2~~ each describe one electron. The  
magni tude  of  the pair ing number  is max imal  (]Xi I = ½ for  i =  1, 2). M a x i m a l  
pairing distributes bonding electrons equally on each atom. 
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2.2. Lipkin-Nogami Hamiltonian for the HL model 

] o ~ ~ )  does not conserve particle-number. A Lipkin-Nogami Hamiltonian can 
enforce particle-number symmetry [6]. It may be expanded about the correct 
average number of particles (two). 

~ , L  = ~ - £~L  '1 "1 
j~[PHNL ] - -  ] [ P N ]  [ ~  __ ")~ -L- _1 ] [ P N ]  [ ~  - -  2) 2.~ . (23) 

- -  ~ .~ I ,HL\~  V H L  z . )  / 2 z ~ 2 , H L k .  * H L  

/ t  is the ordinary Hamiltonian and £~N1 is an operator which enforces partiele- 
number symmetry (L operator). ][PN] and ][PN] "~1,~z "~2,nz areAbasic parameters. [PN] 
indicates particle-number conservation is enforced. NuL is the HL number 
operator. 

2 

N H L  ~ ^ + ^  = L _  ak ak. (24)  
k = 2  

2.2.1. HL t?arameters. With correct parameters, the Schrödinger equation for 
IHL) and H may be replaced by the Schrödinger equation for I j fSe)  and HHL. 
Values are determined by side conditions [1, 6]. 

,f,~Nl = ¼(<1i2~1~1 l i 22 }  - ( I , i *~R I  >) (2s) 1 , H L  

~t»N~ = ¼({lifilJqlliz]) + < Ig*~gl > - 2 ( H L I / t I H L ) ) .  (26) 2 , H L  

<HLIBIHL> is the ground-state HL energy (first-order energy). 

(HLl~]HL } = (W4e I~ùs I ~ ~ }  -- E,,L ---- E«». (27) 

oi2~1~1~i2~> and (IR*~ggl) are single-determinant energies of systems with 
total charge equal two. In the molecular regime, {~i2~l~rl l i2~> ((lR*J9gl})is 
the energy of a doubly charged negative (positive) molecular ion calculated with 
orbitals for the neutral molecule. In the atomic regime, Oi2][Jqlli2]) 
((]K*H/£] }) is the energy of two singly-charged negative (positive) atomic ions 
calculated with orbitals for neutral atoms. Negative ions may be unstable in all 
regimes [10, 11]. 

B [ P N ]  "~ ù 2,HL  ̂ 1~ « finite-difference approximation that replaces ~2/0N2× 
[<~~ It/[~~>] by the average of model energies for creating two holes and 
two particles. Averages are expected to be positive and to become large at small 
bond distances. Similar behavior is expected from similar types of bonds. 
Limiting values at long bond distances are determined by atomic states. If energy 
levels of HL quasiparticles were continuous, ][PN] would vanish identically. ù~ 2 , H L  

B [ P N ]  is the average of the energy-difference between excited states with two 1 , H L  

holes and two particles. An estimate is: 

B[PN] 61 + e2 (28) 
1 , H L  2 

where e's are orbital energies for a neutral determinant. Equation (28) is usually 
negative; however, repulsions between doubly occupied ~b~ and q52 in the model 
of the negative ion dominate at short bond distances and cause Eq. (28) to 
beeome positive. Limiting values at long bond distances are determined by 
atomic states. If energy-levels of HL quasiparticles were continuous, ~teN1 would t~ 1 , H L  

be analogous to chemical potential. 
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Effective parameters. Second-quantized models identify effective parameters by 
normal ordering of operators. Normal ordering with respect to 1 . . ~ )  is a special 
case of  normal ordering for the BCS function [12, Sect. 11.4]. It is denoted by 
:- . . : ,  where •. • stands for a product of  second-quantized operators. 

[~ [PN] "~ [£[PNI ~ and Normal ordering of/~tHe~ yields a sum of  zero- V~0,HLZ, one- ~'-'HmJ, 
two-body r/'~eUl a L operators [3]. \.ta HL ,2  ] 

£ [ ~ N ]  ~ [ P N ]  ± f [ P N ]  z [ P N ]  (29) 
~- ~ H L , 2  q -  x"~HL,1 -Jr" "~O,HL" 

Those needed to enforce particle-number symmetry may be defined with the 
canonical representation [ 1]: 

i [ P N ]  1_] [PN] . ~ 2  HL,~ = 2"~2,HL " "  HL : (30) 

(" 2 ^ ^ " ]  
} 2 [ P N ] . / ~  • 2[ PN] V h " " + a  " 

~ [ P N ]  j H L  • H L ' - -  2 ,HL  /'~ k ' t a k  k- ) "t"HL'I  ~ "<t 2 k = 2  
2IPNI . ^  ~ . . ^ + ^ +  

AU 2,HL E_ Zk( .a£ak. q- .ak az  :) 
k = 2  

(31) 

[PN] __ ] [ P N ]  -L_ ! ~ [ P N I  (32) 
H L  ~ "~ 1,HL T 2 t~ 2 ,HL  

[PN] - -  A,~,, 2 ] [PN] ( 33)  
O,HL - -  "rZ. 1 t~ 2 ,HL" 

They satisfy several inequalities: 
[PN] > ][P.N] > ~[PN]  ) 
2 ,HL  t~'HL "~I ,HL [ (34) 

] [PN l ~ ] [PN] [ "  
"~2,HL ~ g~O,HL .) 

2 ~  NI is a finite-difference approximation to O/ON[(,~LZ [ / t [ , ~ ) ] ,  with all 
other variables held constant. If energy levels were continuous, the finite-differ- 
ence would equal the derivative, and 2 ~  N1 would be analogous to chemical 
potential. Like chemical potential for ordinary BCS theory, 2~ff j satisfies a gap 
equation. Gap equations and Eq. (32) give the same answer [1]. 

tPUl is the difference between ground-state averages of  the Hamiltonian: O,HL 

~t~,~ _ < z e ~  I ~'l°xr~e > -  (HLI/tIHL5 > 0. (35) O,HL - -  

All other parameters involve derivatives m" ~[PN] with respect to particle-number: ,oat ~,,. O,HL 

k Ok 

[x ~o~2d ] = ~N ' S Y  [ < ~ I H [ ~ > ]  
~z 

] [PN] [2  [PN] 1 

[PN] = 0 F ] [ p N ] .  I (36) 

, .L = _ ~ + 2 e N  2 } ~ o..LJ 

They are expected to vary more rapidly than : [eNl in the molecular region. "~'O,HL 

Parameters are plotted in Fig. 4. There are three curves for each molecule at 
long bond distances: 

[PNI ][PNI ]~PHN]L, fo r  R -+ ~ .  2,HL = "°O, HL > 2~ PNI > (37)  
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Fig. 4. Parameters for L operators 

Orderings for the "long" F2 bond differ from others at R~ : 

2[PN] ] [ P N ]  ][PN1 :> ] [ P N ]  f o r  F2 at R e } (38) 2,ILL ~'> +~'O.HL ~ +~'HL rUl,HL~ 

] [PA r] 2[pN] ~.~ ] [PN t .._ ~[FN] for all others at R~ " 

Slopes of ~ ~eNl "~0,HL are positive at Re. Slopes of its derivatives with respect to 
particle-number are negative at R e . 
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2.2.2. Unperturbed Hamihonian. One-body terms of the model Hamiltonian are 
identified by the normally ordered expansion of HHZ is the canonical representa- 
tion [3]. The unperturbed Hamiltonian Kg~,I  is the sum of diagonal elements of 
the one-body Hamiltonian after the HLBV transformation. 

A -I- *" t 
Kx~w, 1 = ~ l~qq~q ~q 

q 

2 2 -  2 2_ /£11 = ~ - ~ I T ,  K22 = ~ " (39) 

t(,qq = - -  l lqq,  holes; t£qq = Vqq,  particles 
v(p) is the self-consistent energy (self-consistent pairing potential). Diagonaliza- 
tion of v defines canonical holes and particles for BCSLN-HL.  Equation (39) is 
subject to the condition that v is diagonalized in the hole and partiele subspaees. 

3. BCSLN-HL (2 and 3) 

The perturbation p(1) is the two-body operator in the canoni¢al representa- r~Ao,2 
tion: 

ü~» _ l v '  , ~ o ) : ä +  ~+A *̀  . 
~~,2 -- ,~~ --ijk« aj alak. (40) 

x.. i jkl 

VO) is the difference between matrix elements for the electron-electron repulsion ijkl 
and the two-body L operator [3]. Perturbative corrections are represented by an 
exact order-by-order series expansion of non-redundant FD. Up to any order, 
the sum of all diagrams scales correctly against extensive parameters of the 
system. 

FD are evaluated for the special representation Œ [1]. Non-bubble diagrams 
are calculated with general formulae [3]. Energy denominators are products of 
sums of Xqq. Renormalization adds a term to V~~z and modifies l~qr , q ~ r. The 
latter are bubble elements. Renormalization and general formulae for bubble 
diagrams are reported elsewhere [1, 13]. 

3.1. Diagrammatic overcount 

A convenient expression for energy up to order N is: 
N 

E ( N )  = W(HN)L -'~ 6D(K)' 6D(K)= E D(K)" (41) 
K=2 

D (K) is the sum of all non-bubble FD of order K [3]. Normal HL  energy W(HN2 is 
EHL with all FD for HL quasiparticles removed up to Nth order: 

W~B = EHL -- 6M~B. (42) 

6M~2 is the sum of model-included FD for HL quasiparticles up to order N: 

6D(HNL) = ~]2 D(HKB 

äM(HN2 = 6D(HN2 + 6B(HNL ), K N • (43) 

a~~2 = Z w#2 / K=2 .) 
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5M(HN2 is counted by EHL and 6D (K). Using W(ff ) instead of EHL in Eq. (41) 
avoids diagrammatic overcount up to Nth order. 

The two pieces of 5M(H N2 correspond to interactions counted explicitly and 
implicitly by renormalized FD. The explicit term (6D(HN2) accounts for Nth order 
HL quasipartiele seattering diagrams. HL quasiparticle scattering diagrams range 
over all non-bubble diagrams whose down-arrows (up-arrows) are labelled 
exclusively by HL quasiparticle label 1 (2). All spins are included. 

The implieit term (6B~)c) is the sum of all Nth order dangerous HL bubble 
diagrams. It removes redundant pieces of HL self-energy from renormalized 
diagrams. All bubble diagrams are dangerous. Safe bubble diagrams vanish 
because v is diagonalized in the hole and particle subspaees. 

Model-included FDs are plotted in Figs. 5 (second order) and 6 (third 
order). Signs of DU 2 and M(HKL ) oscillate. B(H K2 are always negative. 

•(3) /. ~Ar(3) « r~(3) I "  (44) HL ~. zr.t HL ~" ag HL 

~ ~  HL ~ ~ ~ H L  f ~,~«Jt HL 

Model FD vanish where distances between paired electrons are large. Except for 
6R(3) for H»  all curves exhibit minima. Those for the "long" F2-bond are on HL 
opposite sides of R« relative to all others. 

The fiM¢ff2 and other model FD are computed with renormalized one- and 
two-electron matrix elements. Thus, W~~ is a renormalized energy which adia- 
batically connects "uncorrelated" molecular energies to correct atomic energies. 
Renormalization sums divergent FD for the HF model to all orders. Up to order 
N, perturbative corrections to W~2 and EHr are in one-to-one correspondence. 
When the HF model is a correct starting model, E H L  ~ W ( f f ;  "~ E H F .  At large 
bond distances, U/'(N), HL = Ertv(atom l) + EHr(atom r) = EHL. 

3.2. Analysis of perturbative corrections 

It is convenient to rewrite Eq. (41) as: 

E (N) = EHNL + ( ~ E ( N ) ~ .  

0B (N)= K~=Z 6(x)E J (45) 

6E (u) is the total perturbative correction up to order N. 6(K)E is the Kth-order 
perturbative correction. 

(~(K)E = D (K) -- M(HK)L. (46) 

Scaled perturbative corrections are plotted in Fig. 7. 

6 ( K ) E  
5(K)Ë -- (47) 

Nelec " 

N«~«« is the number of electrons for the molecule. 6(2)E range from about -0.008 
hartree for H2 to about -0.025 hartree for F2 and FH. For comparison, 
5Ë(~)~-0.04 hartree for the electron gas [14, Table 3-8], and 5(2)E,,~--0.02 
hartree for the lowest-lying open-shell states of CaO [15]. 5(3)Ë are an order of 
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• Second-order model-included FD 

6M(H~ ~~(2) ~n(2) ¢ " ~ H L  " ~ H L  

H 2 <1 * 

.6 LiH o ~ 
,o FH b o 

Value at experimental R~ 

6 Value at RMa~: 

- -  F2 

I I I / I I I I 

1 2 3 4 5 6 7 8 9 

bond distance / a0 

Fig. 5. Second-order H L  model-included F D  
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magnitude smaller than 6 (2)Ë~ and are sometimes positive and sometimes nega- 
tive. At long bond distances, all curves are nearly constant and essentially 
describe atomic correlation, fi (x)Ë for LiH are more nearly constant than others_, 
apparently because LiH is weakly covalent, fi(2)Ë for F 2 and FH are similar. 6(2)E 
for FH appear 10% smaller at long bond distances: This disappears if N~le« = 9 
is used for FH. 6(3)Ë for F2 and FH are almost indistinguishable in Fig. 7. 

5(N)Ë for H2 do not vanish at long bond distances: This is because side 
conditions for unperturbed excited states are neglected (see Sect. 3.1 of Paper III 
of this series). 
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• (3)E/Ô(2)E a r e  plotted in Fig. 8. Exeept for H 2 ,  magnitudes are similar. 
Positive (negative) ratios correspond to monotonic (oscillatory) convergence. 
Convergence for H2 and LiH ( F  2 and FH) is monotonic (oscillatory) near Re. In 
the molecular regime, B C S L N - H L ( 1 )  starting m o d e l s -  the Ansatz plus the 
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Fig. 7. Scaled per turba t ive  correct ions 

basis sets - for H 2 and LiH are more accurate than for F 2 and FH. In the atomic 
regime, B C S L N - H L ( 1 )  appears to be a comparable starting point for all 
systems. 

6 (X)E/EI~L are also plotted in Fig. 8. Largest magnitudes and variations are 
about 2%. Curves for F2 and FH are indistinguishable. 

4. Conelusions 

Magnitudes of successive perturbative corrections through third order suggest 
that B C S L N - H L ( N )  converges. Third-order corrections are about an order of 
magnitude smaller than second-order corrections. Total corrections through 
third order are about two orders of magnitude smaller than first-order energies. 
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Oscillating perturbative corrections n e a r  R e for F2 and FH indicate slower 
convergence. More extensive unperturbed BCSLN models for these molecules 
could be useful. Convergence in atomic regions is satisfactory. 

Acknowledgments. Prof. W. C. Ermler and Dr. S. Wilson are thanked for software. 

R e f e r e n c e s  

1. Sorensen TE (1989) Bardeen-Cooper Schrieffer-Lipkin-Nogami theory: A new method for 
electronic structure calculations with applications to potential energy curves for H2, LiH, FH, 
F2, and N 2. PhD thesis, University of Wisconsin-Milwaukee 



Quantum field theoretical methods in chemically bonded systems IV 53 

2. Sorensen TE, England WB, Silver DM (1989) J Phys B, 22:L539 
3. Sorensen TE, England WB, Silver DM, Steinbom EO (1992) Quantum field theoretical methods 

in chemically bonded systems. II. Diagrammatic perturbation theory. Theor Chim Acta 84:1-19 
4. Sorensen TE, England WB, Silver DM (1992) Quantum field theoretical methods in chemically 

bonded systems. III. BCSLN-HL(N) potential energy curves for the ground states of H»  LiH, 
FH and F 2. Theor Chim Acta 84:21-35 

5. Ring P, Schuck P (1980) The nuclear many-body problem. Springer-Verlag, Berlin 
6. England WB (1982) J Phys Chem 86:1204 
7. March NH, Young WH, Sampanthar S (1967) The many-body problem in quantum mechanics. 

Cambridge Univ Press, London 
8. England WB (1983) Int J Quantum Chem 23:905 
9. England WB (1983) Int J Quantum Chem Symp 17:357 

10. Ahlrichs R (1975) Chem Phys Lett 34:570 
11. England WB (1980) J Chem Phys 72:2108 
12. Rowe DJ (1970) Nuclear collective motion: Models and theory. Methuen, London 
13. Sorensen TE, England WB (1992) Quantum field theoretical methods in chemically bonded 

systems. V. Renormalization driven by the compensation principle and bubble diagrams. In 
preparation. 

14. Pines D (1963) Elementary excitations in solids, Benjamin, NY 
15. Toma~i6 ZA (1989) Open-shell many-body perturbation theory study of the a31I and 3Z+ states 

of calcium oxide. PhD thesis, University of Wisconsin-Milwaukee 


